Photoluminescence decay rate of silicon nanoparticles modified with gold nanoislands

نویسندگان

  • Viktor Dan’ko
  • Katerina Michailovska
  • Ivan Indutnyi
  • Petro Shepeliavyi
چکیده

UNLABELLED We investigated plasmon-assisted enhancement of emission from silicon nanoparticles (ncs-Si) embedded into porous SiOx matrix in the 500- to 820-nm wavelength range. In the presence in the near-surface region of gold nanoisland film, ncs-Si exhibited up to twofold luminescence enhancement at emission frequencies that correspond to the plasmon resonance frequency of Au nanoparticles. Enhancement of the photoluminescence (PL) intensity was attributed to coupling with the localized surface plasmons (LSPs) excited in Au nanoparticles and to increase in the radiative decay rate of ncs-Si. It has been shown that spontaneous emission decay rate of ncs-Si modified by thin Au film over the wide emission spectral range was accelerated. The emission decay rate distribution was determined by fitting the experimental decay curves to the stretched exponential model. The observed increase of the PL decay rate distribution width for the Au-coated nc-Si-SiOx sample in comparison with the uncoated one was explained by fluctuations in the surface-plasmon excitation rate. PACS 78. 67. Bf; 78.55.-m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures.

Highly homogeneous surface-enhanced Raman scattering (SERS) substrates were produced on the centimeter scale by annealing solution-processed gold nanoparticles into plasmonic nanoislands. The average size and separation of the nanoislands are controlled by tuning the annealing temperature. SERS measurements yield a global enhancement factor as large as 10(7) over an area of 2 × 2 cm(2) for samp...

متن کامل

Investigating Molecular Spontaneous Emission Rate Enhancement Close to Elliptical Nanoparticles by Boundary Integral Method

Utilizing boundary integral method (BIM), we investigate molecularspontaneous emission rate enhancement in the vicinity of plasmonic nanoparticles ofelliptical cross section. These types of nanoparticles can considerably enhance themolecule decay rate. The spontaneous emission rate can be modified by altering theaspect ratio of the elliptical nanoparticle, the background refractive index andnan...

متن کامل

Recombination of charge carriers in heterostructures with Ge nanoislands grown on Si(100)

In this paper, the study of the recombination of non-equilibrium charge carriers and determination of recombination mechanisms in Ge/Si heterostructures with nanoislands have been presented. The effects of long-term photoconductivity decay in Ge/Si heterostructures with Ge nanoislands have been found as caused by variations of the electrostatic potential in the near-surface region of Si(100) su...

متن کامل

Photoluminescence quenching of semiconducting polymer nanoparticles in presence of Au nanoparticles

In this report, we have demonstrated the photoluminescence quenching and energy transfer properties of semiconducting polymer nanoparticles, poly (N-vinylcarbazole) (PVK) in presence of different sized Au nanoparticles by steady state and time-resolved spectroscopy. We have described the quenching phenomena by sphere of action static quenching mechanism and both dynamic and static quenching pro...

متن کامل

Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters.

We report local-field-enhanced light emission from silicon nanocrystals close to a film of nanoporous gold. We resolve photoluminescence as the gold-Si nanocrystal separation distance is varied between 0 and 20 nm and observe a fourfold luminescence intensity enhancement concomitant with increases in the coupled silicon nanocrystal/nanoporous gold absorbance cross section and radiative decay ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014